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ABSTRACT

Adaptive range oversampling processing can be used either to reduce the variance of radar-variable esti-

mates without increasing scan times or to reduce scan times without increasing the variance of estimates. For

example, an implementation of adaptive pseudowhitening on the National Weather Radar Testbed Phased-

Array Radar (NWRTPAR) led to a twofold reduction in scan times. Conversely, a proposed implementation

of adaptive pseudowhitening the U.S. Next Generation Weather Radar (NEXRAD) network would reduce

the variance of dual-polarization estimates while keeping current scan times. However, the original version of

adaptive pseudowhitening is not compatible with radar-variable estimators for which an explicit variance

expression is not readily available. One such nontraditional estimator is the hybrid spectrum-width estimator,

which is currently used in the NEXRAD network. In this paper, an extension of adaptive pseudowhitening is

proposed that utilizes lookup tables (rather than analytical solutions based on explicit variance expressions) to

obtain range oversampling transformations.After describing this lookup table (LUT) adaptive pseudowhitening

technique, its performance is compared to that of the original version of adaptive pseudowhitening using tra-

ditional radar-variable estimators. LUT adaptive pseudowhitening is then applied to the hybrid spectrum-width

estimator, and simulation results are confirmed with a qualitative analysis of radar data.

1. Introduction

On weather radars, the variance of radar-variable esti-

mates and the scan (or update) time are typically coupled—

that is, improving one usually comes at the expense

of degrading the other. For example, one of the simplest

ways to reduce the variance of estimates is by increasing

the number of samples that are used in the estimation

process; this leads to longer dwell times (for the samepulse

repetition time) and overall longer scan times (for the

same volumetric coverage). Range oversampling pro-

cessing was proposed by Torres and Zrnić (2003a,b) as a

way to reduce the variance of radar-variable estimates

without increasing scan times or, conversely, to reduce

scan times without degrading the variance of estimates.

Range oversampling consists of sampling the received

signals at rates faster than the inverse of the pulse width so

that more samples (in range time) are available for pro-

cessing with the same number of transmitted pulses per

dwell (or the same dwell times). Because the transmitted

pulse width remains the same as with conventional

sampling, so does the size of the radar resolution volumes.

Thus, range oversampling creates overlapped radar reso-

lution volumes, which lead to a significant correlation of

signals along range time. If auto- and cross-correlation

estimates were incoherently averaged in range, this would

not result in maximum variance reduction. However, un-

der the assumption of a uniform distribution of hydro-

meteors, the range correlation of oversampled signals can

be measured or computed a priori (Curtis and Torres

2013), and range-oversampled signals can be decorrelated

(or whitened) using a linear transformation so that in-

coherent averaging results inmaximumvariance reduction

for all radar-variable estimates.

Although a whitening transformation on range-

oversampled signals achieves complete decorrelation

and hence maximum variance reduction, it also leads to

an enhancement of the noise that limits its application at

low-to-moderate signal-to-noise ratios (SNR). To

overcome this limitation, pseudowhitening was in-

troduced (Torres et al. 2004) as a natural way to trade

variance reduction for less noise enhancement. In

practice, the best compromise is obtained when the

pseudowhitening transformation is tailored to the signal

characteristics; this is referred to as adaptive range
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oversampling processing or simply adaptive pseudow-

hitening. Minimization of explicit variance expressions

for the spectral moments and polarimetric variables

leads to closed-form solutions for pseudowhitening

transformations that depend on signal characteristics

such as the SNR, the normalized spectrum width, the

differential reflectivity, and the cross-correlation co-

efficient (Curtis and Torres 2011, 2014). Currently,

adaptive pseudowhitening relies on these closed-form

solutions and on estimates of signal characteristics to

obtain the proper pseudowhitening transformation for

each radar variable at each radar gate.

In recent years, nontraditional radar-variable esti-

mators have gained popularity, since they effectively

address some of the deficiencies of their traditional

counterparts and exhibit overall improved performance.

Examples of nontraditional estimators are the hybrid

spectrum-width estimator (Meymaris et al. 2009), the

multilag polarimetric variable estimators (Lei et al.

2012), and the improved correlation-coefficient estima-

tor (Ivić 2014). Unfortunately, explicit variance ex-

pressions for these estimators either do not exist or are

difficult to derive. Thus, the original adaptive pseu-

dowhitening algorithm cannot be applied to these non-

traditional estimators because without closed-form

solutions, there is no mechanism by which to obtain

suitable pseudowhitening transformations.

In this paper, we extend adaptive pseudowhitening so that

transformations canbeobtainedwithout theneed for explicit

variance expressions. The proposed extension makes adap-

tive pseudowhitening compatible with any radar-variable

estimator and,more importantly, enables its implementation

on systems that use nontraditional estimators for which ex-

plicit varianceexpressions arenot available. For example, the

hybrid spectrum-width estimator has recently replaced the

traditional spectrum-width estimator (the one based on

the ratio of autocorrelation estimates at lags 0 and 1) on the

Weather Surveillance Radar-1988 Doppler (WSR-88D)

signal processor, and other nontraditional estimators are

currently being considered for future upgrades. Hence, an

operational implementation of adaptive pseudowhitening

on the WSR-88D signal processor is contingent upon its

compatibility with nontraditional estimators (at the time

of writing this paper, the hybrid spectrum-width estimator

is the only nontraditional estimator used operationally on

the WSR-88D).

The paper is organized as follows. Section 2 describes

the proposed extension of adaptive pseudowhitening. In

section 3, we validate the proposed extension by com-

paring its performance to that of the original algorithm

for traditional estimators and show that it is robust to

hardware drifts or radar-to-radar variations. In section

4, we use simulations and data collected with the KOUN

radar (Norman, Oklahoma) to illustrate the perfor-

mance of the proposed extension. We show that the

proposed extension of adaptive pseudowhitening can be

used to improve spectrum-width estimates that are ob-

tained with the hybrid spectrum-width estimator, which

does not have an explicit variance expression. In section

5, we end the paper with a summary and final remarks.

2. Lookup table adaptive pseudowhitening

In this section, we give a short introduction to adap-

tive pseudowhitening and then extend it by replacing the

closed-form variance-minimization solutions used in the

original algorithmwith lookup tables. After presenting a

suitable approach, the procedure for producing the

lookup tables is described, the lookup table adaptive

pseudowhitening algorithm is presented, and some

practical issues are considered.

The basic idea behind whitening or pseudowhitening

is to multiply the range-oversampled time series data

for a particular range gate by a linear transformation to

produce transformed time series data that can be used to

obtain estimates with lower variance. This is captured

with the following expression:

X5WV , (1)

where V is an L-by-M matrix of range-oversampled

complex time series data,W is a complex-valuedL-by-L

linear transformation, and X is an L-by-M matrix of

transformed time series data. The constant L is the range

oversampling factor, andM is the number of samples in the

dwell. For each correlation needed to estimate a particular

radar variable [e.g., only the lag-0 autocorrelation is

needed for the reflectivity estimator, but both lag-0 (R0)

and lag-1 (R1) autocorrelations are needed for the tradi-

tional R0–R1 spectrum-width estimator], L correlation

estimates are calculated, corresponding to the rows of the

transformed data matrix X. These L correlation estimates

are then averaged to form one estimate of each correla-

tion; these estimates are finally used to compute the single

radar-variable estimate for the range gate.

The goal of adaptive pseudowhitening is to find the

best possibleW that minimizes the variance of the radar-

variable estimator. In the case of original adaptive

pseudowhitening, we start with an explicit expression for

the variance of a particular radar variable u. Generically,

this is given as

Var(û)5DfAtr[(W*C
V
WT)2]

1Btr[(W*C
V
WT)(W*WT)]1Ctr[(W*WT)2]g , (2)
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where tr(�) is the trace operator, superscript T denotes

thematrix transpose, the superscript asterisk (*) denotes

complex conjugation, and CV is the normalized range

correlation matrix of the time series data before the

linear transformation (Curtis and Torres 2014).1

Assuming a uniform distribution of hydrometeors in the

radar volume, the normalized range correlation matrix

can be precomputed, since it depends only on the modi-

fied pulse (recall that the modified pulse is determined

by the transmitted pulse envelope and the receiver im-

pulse response). The A–D constants are radar-variable

specific; for example, the constants used for the signal

power estimator are A 5 (1/2)svnp
1/2, B 5 2/SNR0, C 5

1/SNR2
0, and D 5 S2/ML2, where svn is the spectrum

width normalized by the Nyquist cointerval, SNR0 is the

signal-to-noise ratio at the output of the digital receiver

(linear units), and S is the signal power (linear units). TheD

constant is useful to accurately calculate the variance but is

not needed for theminimization, so the constants of interest

are A–C. For the signal power estimator, these constants

depend on two values: svn and SNR0. As shown in Curtis

and Torres (2014), the variances of the signal power esti-

mator S, the radial-velocity estimator y, and the spectrum-

width estimator sy all depend on those two variables. The

variances of the dual-polarization estimators depend on

those same two variables and also on the differential re-

flectivity ZDR and the correlation coefficient rHV.

At each range gate, adaptive pseudowhitening finds a

nearly optimal linear transformation that minimizes (2).

A truly optimal linear transformation cannot be ob-

tained because theoretical variance expressions are de-

rived using approximations and because they depend on

values that are unknown (svn, SNR0, ZDR, and rHV). In

practice, these unknown values are estimated as part of

the process of finding the linear transformation. Expe-

rience has shown that adaptive pseudowhitening per-

forms almost identically whether estimates or true

values are used (Curtis and Torres 2011, 2014). Based on

(2) and on estimates of svn and SNR0 (andZDR and rHV

for the dual-polarization variables), a linear trans-

formation is calculated that attempts to minimize the

variance to provide a nearly optimal estimate of the

radar variable. However, if it is difficult or impossible to

find an explicit variance expression for a particular radar

variable, then an alternate approach must be developed.

In this case, the unknown values still need to be esti-

mated but a replacement for the variance expression is

required. We propose using a lookup table indexed by

estimated values of svn and SNR0 (andZDR and rHV for

the dual-polarization variables) to provide the appro-

priate pseudowhitening transformation. This approach

results in the proposed extension, herein referred to as

lookup table (LUT) adaptive pseudowhitening.

Although the variance expression is minimized by

finding a linear transformationW, our efficient real-time

implementation of adaptive pseudowhitening does not

explicitly compute W. Following a similar approach to

the one in Curtis and Torres (2014), the lookup table

formulation of adaptive pseudowhitening divides the

linear transformation into two parts:

W5D1/2U*T . (3)

Rather than applying W directly, the efficient im-

plementation first decorrelates the time series data using

U*T and then employs a weighted average d to combine

L correlation estimates. Matrix U comes from the ei-

gendecomposition of the normalized range correlation

matrix CV 5U*LUT and only changes when the range

correlation matrix changes. The weighted average is

derived directly from the real-valued diagonal matrix

D1/2; this is the adaptive part of the transformation that is

computed separately for each radar variable and at each

range gate. The main advantage of the efficient im-

plementation is that the range-oversampled data can be

clutter filtered before the second part of the trans-

formation is applied; that is, the clutter filter is applied

only once. Otherwise, the clutter filter would need to be

applied separately to transformed data corresponding to

each radar-variable-specific transformation.

Mathematically, the first step of the efficient imple-

mentation for each range gate is to premultiply the

L-by-M time series matrix V by U*T . The partially

transformed (and decorrelated) matrix ~X5U*TV is used

to compute sets of L correlations (one set for each

correlation is needed to compute a radar variable).

Figure 1 graphically depicts the steps of the efficient

implementation of adaptive pseudowhitening process-

ing for the computation of the spectral moments; steps 1

and 2 show the partial transformation being applied to V

and the computation of the sets of L correlations. The

third step is the application of a fixed matched-filter

weight vector dMF to obtain the correlations needed to

compute the initial estimates of svn and SNR0 (and ZDR

and rHV for the dual-polarization variables). These ini-

tial estimates are used in the next step (step 4 in Fig. 1) to

calculate the radar-variable-specific weight vectors that

capture the adaptive part of adaptive pseudowhitening

and are the focus of both the original and LUT versions.

1 This formulation assumes that the polarimetric channels are

matched so that the normalized range correlation matrices for the

horizontal and vertical channels are the same. The reader is re-

ferred to Torres (2009) for the case with mismatched channels.
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The weight vector for each radar variable du is closely

related to the second part ofW,D1/2. It combines the sets

of L correlation estimates to obtain the correlations

needed to calculate the final radar-variable estimates

(step 5 in Fig. 1). The elements of du5 [d0, d1, . . . , dL21]

are properly scaled values of the elements along the

diagonal matrix D. We use the squared matrix D instead

of D1/2 because the correlations are computed from

products of time series samples; the details of this deri-

vation can be found in Curtis and Torres (2011).

For the original version of adaptive pseudowhitening,

the dl values are given by

d
l
5 g

l
l

Al2
l 1Bl

l
1C

, (4)

where ll are the eigenvalues of CV and A–C are from

the radar-variable-specific variance expression and de-

pend on svn and SNR0 (and also ZDR and rHV for the

dual-polarization radar variables), and g is a power-

preserving factor. When using the original version of

adaptive pseudowhitening, the initial estimates of svn,

SNR0, ZDR, and rHV are computed and substituted into

the formulas forA–C from the variance expression [(2)].

For the LUT version, we need to find a way to com-

pute the dl values without using an explicit variance

expression. One way of doing this would be to calculate

three different lookup tables for A–C that are based on

the estimates of svn, SNR0, ZDR, and rHV. Instead of

using a variance expression, the lookup tables can be

constructed using an optimization procedure based on

Monte Carlo simulations of radar signals with varying

characteristics. After trying three variations of this

procedure (an L-parameter version to find du directly, a

three-parameter version to find A–C, and a single-

parameter version), we concluded that the single-

parameter formula for the dl values is sufficient, since

FIG. 1. Graphical depiction of the efficient implementation of adaptive pseudowhitening

processing. Only the steps to produce the single-polarization spectral moments are included for

simplicity.
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all three versions performed nearly identically. This

single-parameter formula is related to the sharpening

filter described in Torres et al. (2004) and is given by

d
l
5 g

l
l

[pl
l
1 (12 p)]2

. (5)

This formula also includes a power-preserving factor

and depends on the eigenvalues of the normalized range

correlation matrix, but there is only one parameter,

p (0# p# 1), instead of the three parameters in (4). This

greatly simplifies the optimization procedure, and we

will show in section 3 that the one-parameter version of

the LUT adaptive pseudowhitening algorithm performs

comparably to the original adaptive pseudowhitening

algorithm.

The dimensionality of the lookup tables is determined

by the number of unknown values that are found in the

formulas for A–C. For the spectral moments, lookup

tables are two-dimensional and are based on svn and

SNR0; for the dual-polarization variables, they are four-

dimensional and are based on svn, SNR0, ZDR, and rHV.

The number of samples M is not an independent vari-

able in the lookup tables because the variance expres-

sions that were originally used do not have a dependence

onM for A, B, or C.Although the approximations used

to derive the formulas for A–C are less valid for very

small values ofM, the formulas currently work well for a

wide range of signal parameters. If there were a strong

dependence on M for a future radar-variable estimator,

then this procedure could be expanded to include M as

an independent variable in the lookup tables. For this

work, we analyzed the lookup tables corresponding to

the traditional radar-variable estimators for different

values of M and observed an overall weak dependence

that vanishes as M increases. That is, the reflectivity

LUT converges forM$ 4, the ones for the polarimetric

variables for M $ 16, and those for radial velocity and

spectrum width forM$ 32. Thus, for all radar variables,

the smallest value of M beyond which all LUTs look

virtually identical is about the same or smaller than the

typical values used operationally. Thus, to simplify the

process and still achieve accurate performance for all

radar variables, we produced the LUTs using a fixed

value of M 5 32.

These are the basic steps to produce a lookup table

for u:

1) Simulate a large number of time series realizations

assuming a Gaussian weather signal model (50 000

were used in this case) and a given set of signal

characteristics (i.e., svn and SNR0 for the spectral

moments plusZDR and rHV for the dual-polarization

variables) using a representative value of M and the

desired L (in this work M 5 32 and L 5 5). This

includes imposing the appropriate range correlation

on the data by convolving independent time series

realizations with the radar’s modified pulse, which

can be measured a priori (in this work we used the

modified pulse measured on the KOUN radar).

White noise is added after applying the range corre-

lation to the data because the noise is assumed to be

uncorrelated with the weather signal.

2) ApplyU*T to each realization of V (L-by-M samples)

and calculate the correlations (sets of L) needed for

the particular radar-variable estimator.

3) Find the p value that minimizes the mean squared

error of radar-variable estimates; this can be done by

brute-force search or by using a standard single-

parameter optimization algorithm (in this work we

used the well-known golden-section search). Regard-

less of the method used to minimize the mean

squared error of estimates, for each value of p being

tested, find the corresponding du and apply it to each

set of L correlations. Estimate the radar variable for

each realization and compute the mean squared error

of estimates using the results for all realizations.

4) Store the optimum value of p in a lookup table that is

indexed by svn and SNR0 (and ZDR and rHV for the

dual-polarization variables).

5) Repeat steps 1–4 for each set of signal characteristics:

SNR0 and svn for the spectral moments and ZDR and

rHV for the dual-polarization variables.

One lookup table for each radar-variable estimator is

stored for later use by LUT adaptive pseudowhitening;

a lookup table needs to be recomputed only if a partic-

ular radar-variable estimator changes.

Although the steps for implementing LUT adaptive

pseudowhitening are similar to the steps for the original

version, they are included here to show the particular

details of the LUT version and also some slight changes

from previous implementations (Curtis and Torres 2011,

2014). The steps directly follow the ones depicted in

Fig. 1 but also include the dual-polarization radar

variables.

1) Compute the partially transformed matrices of time

series data, ~XH,V 5U*TVH,V , using the U computed

from the eigendecomposition of CV 5ULUT.

Ground clutter filtering can be applied to these two

partially transformed data matrices, where subscript

H,V indicates a quantity that corresponds either to

the horizontal or vertical polarization channel.

2) Compute sets of L range-oversampled auto- and

cross correlations from the ~XH,V needed to compute

SNR0, svn, ZDR, and rHV, and any additional corre-

lations needed for other radar-variable estimators.
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3) Compute the matched-filtered weight vector d0
(a particular instance of dMF) from (5) using p 5
0 and apply it to each set of L correlations. Using

the resulting correlations and the adjusted noise

powers, obtain initial estimates of SNR0, svn, ZDR,

and rHV. Horizontal- and vertical-channel noise

powers are adjusted by the corresponding noise

enhancement factor, which is given by the sum of

the elements of d0.

4) Using the initial estimates of SNR0, svn, ZDR, and

rHV, retrieve radar-variable-specific values of p from

the lookup tables and calculate the corresponding

weight vectors: dZ, dy, dsy
, dZDR

, dFDP
, and drHV

.

5) For each u, apply the appropriate du to each set of L

correlations needed to compute the final radar-

variable estimate.

6) Compute final radar-variable estimates from the

variable-specific correlations obtained in the previous

step. Use the appropriate variable-specific-adjusted

noise powers when necessary, where Nu(H,V) 5
NEFu 3 NH,V and NEFu 5�L21

l50 du(l).

It should be noted that step 3 differs from the corre-

sponding step in Curtis and Torres (2014). We now use

pseudowhitening estimators with p 5 0 to obtain the

initial estimates of svn, SNR0, ZDR, and rHV to access

the LUTs, since they outperform their digital-matched-

filter counterparts in the useful range of SNR values.

This also leads to a simplification of the algorithm be-

cause step 3 better matches the processing in steps 4–6;

the only difference is that p is 0 in step 3, whereas p is

retrieved from the lookup tables in step 4. However,

there is a trade-off: pseudowhitening estimators with

p 5 0 exhibit slightly degraded range resolution com-

pared to their digital-matched-filter counterparts, which

can be quantified using the range weighting function

formulation from Torres and Curtis (2012). This is typ-

ically not a problem, since it applies only to the initial

estimates used to access the LUTs and not to the final

radar-variable estimates.

Although extending adaptive pseudowhitening to use

lookup tables is straightforward, there are some practi-

cal issues that need to be addressed. The first is that the

lookup tables are computed using a particular modified

pulse. If the lookup tables are sensitive to changes in the

range correlation, they would require periodic recalcu-

lation, which would be amajor obstacle to implementing

LUT adaptive pseudowhitening. This could also be an

issue for a network of radars, since there is variation in

the modified pulse across the network. Fortunately, we

will show in the next section that the lookup tables are

not especially sensitive to changes in the modified pulse.

Thus, a single set of lookup tables (one per radar

variable) computed using a representative pulse should

work well over time and across a network of radars.

The second practical issue is the number and range of

values of svn and SNR0 (and ZDR and rHV for the dual-

polarization variables) needed to produce the lookup

tables. Based on a sensitivity analysis with varying res-

olutions for each independent variable, we identified

practical sets of values. For SNR0, we used [25,21, 3, 7,

11, 15, 19, 23, 27, 31, 35] (dB), and we chose a non-

uniform grid for the normalized spectrum width svn:

[0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.09, 0.13, 0.17, 0.25].

When accessing the lookup tables, linear interpolation is

used to extract the appropriate value of p; however, if a

value outside of the lookup table is needed, the ex-

trapolated p is just the nearest neighbor. For dual-

polarization variables, the values for ZDR (dB) are

[26, 25, 24, 23, 22, 21, 0, 1, 2, 3, 4, 5, 6], and a non-

uniform grid is used for rHV [0.2, 0.4, 0.6, 0.7, 0.8, 0.9,

0.94, 0.98, 0.99, 1]. These sets of values worked well for

the estimators we tested, but they could be easily ad-

justed if necessary.

In the next section, LUT adaptive pseudowhitening is

validated using (traditional) estimators that have ex-

plicit variance expressions. The effects of changes in the

normalized range correlation matrix are also explored.

3. Validation of LUT adaptive pseudowhitening

The most straightforward way to validate LUT

adaptive pseudowhitening is to compare its perfor-

mance to that of the original version of adaptive pseu-

dowhitening. Since this requires an estimator with an

explicit variance expression, we chose to compare the

performance of these two techniques for both tradi-

tional spectral-moment estimators of reflectivity, radial

velocity, and spectrum width and traditional dual-

polarization estimators of differential reflectivity, differ-

ential phase, and correlation coefficient. These are all

estimators that have an explicit variance expression, and

the values forA–C that are needed to compute du for the

original version of adaptive pseudowhitening from

Eq. (4) can be found in Curtis and Torres (2014). For

LUT adaptive pseudowhitening, lookup tables were

produced using the procedure outlined in section 2. From

the lookup tables, a value of p is retrieved and used to

compute the LUT adaptive pseudowhitening du from (5).

To compare the performance of the original and LUT

adaptive pseudowhitening, 50 000 realizations of time

series data were simulated and processed with both

techniques using a range oversampling factor of L 5 5

(the recommended value for the WSR-88D) and the

modified pulse of the KOUN radar (Fig. 4). The pa-

rameters were set to closely match the lowest elevation
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cut of volume coverage pattern (VCP) 12 on the

NEXRAD network. For the computation of reflectivity

and the three dual-polarization radar variables, the maxi-

mum unambiguous velocity is ya 5 8.33ms21, and there

are M 5 15 samples per dwell. For radial velocity and

spectrum width, ya 5 25m s21 and M 5 40. As men-

tioned previously, the LUTs were produced using a

fixed value of M 5 32. The weather signal character-

istics were chosen to be representative of a typical rain

case: sy 5 2m s21, ZDR 5 0.25 dB, and rHV 5 0.99.

Since they have no bearing on the statistical perfor-

mance, radial velocity and differential phase were ar-

bitrarily chosen to be zero; the SNR was systematically

varied from 0 to 30 dB in steps of 0.5 dB. The resulting

radar-variable estimates corresponding to each tech-

nique were then used to compute biases and standard

deviations.

The results for the spectral moments are shown in

Fig. 2; curves for whitening-transformation-based

(WTB) and digital-matched-filter-based (MFB) esti-

mates are also included for comparison. WTB estimates

achieve the maximum variance reduction at high SNRs

and are obtained with a fixed (nonadaptive) trans-

formation with parameter p 5 1. In contrast, MFB es-

timates use a digital matched filter that maximizes the

SNR, also maximizing performance at low SNRs. De-

tails about both can be found in Curtis and Torres

(2011). In all cases, LUT adaptive pseudowhitening

transformation based (LUT APTB) estimates perform

comparably to original APTB estimates. LUT adaptive

pseudowhitening actually performs slightly better for

the spectrum-width estimator; this is most likely due to

the approximations inherent in the derivation of the

explicit variance expressions. Because the lookup tables

are computed from simulated data, the computations

avoid any approximations and depend only on the sim-

ulation assumptions. For reflectivity, whereas the biases

are comparable for LUT and original adaptive pseu-

dowhitening, both techniques exhibit a small negative

bias at low SNR. These SNR-dependent biases can be

attributed to the larger variability of p values at low

SNRs, which also results in larger variability of power-

preserving factors. The p values are more variable at low

SNRs because they depend on estimates of the signal

power, and these become less precise as the SNR de-

creases. In addition to this variability, the distribution of

the power-preserving factors at a given SNR is not

symmetric about the mean. The combination of larger

variability and asymmetric distribution creates a small

bias in power estimates. At high SNRs, the p values are

concentrated in a narrow interval as are the associated

power-preserving factors so the lack of symmetry is ir-

relevant, and the performance approaches the unbiased

behavior observed when using a fixed value of p (e.g.,

whitening with p 5 1 in the same figure).

Similar to Fig. 2, Fig. 3 shows the results for the po-

larimetric variables, where it is evident that LUTAPTB

estimates perform comparably to original APTB esti-

mates. Although we show results for only one set of

signal characteristics, several cases with varying char-

acteristics were compared, and LUT adaptive pseu-

dowhitening performed comparably in all of them. For

all six of the traditional radar-variable estimators,

the lookup tables provide equivalent performance to

the explicit variance expressions. This suggests that the

LUT adaptive pseudowhitening will work well for esti-

mators without explicit variance expressions.

The LUTs used in the previous simulations were ob-

tained for one particular modified pulse (or range cor-

relation). We want to examine the effect of using LUTs

computed from one modified pulse on data with a mis-

matched modified pulse. To be clear, this is not the same

as producing pseudowhitening transformations from a

mismatched range correlation matrix. We have pre-

viously looked at the importance of accurately measur-

ing the range correlation for adaptive pseudowhitening,

and using a mismatched range correlation matrix may

lead to biases in reflectivity estimates and overall de-

graded performance because of a less-than-optimum

variance reduction (Torres and Curtis 2013). For this

validation of LUT adaptive pseudowhitening, we as-

sume that the range correlation is measured accurately

using a method like the one found in Curtis and

Torres (2013).

For both original and LUT adaptive pseudowhitening,

the measured range correlation matrix is the same and

leads to the same unitary transformation and eigen-

values. The difference in the efficient implementation

occurs when computing the adaptive du. As discussed in

section 2, the weight vector for original adaptive pseu-

dowhitening is computed using three parameters A–C

that are based on the initial estimates of svn and SNR0

(and ZDR and rHV for the dual-polarization variables).

The A–C values are completely independent of the

range correlation (ormodified pulse). For LUT adaptive

pseudowhitening, a single parameter p is used that relies

on the same estimates. Since p serves a similar function

to A–C, it is probably not especially dependent on the

range correlation, but we would still like to confirm this

single-parameter conjecture by examining the effects

of a mismatched modified pulse.

To test the effects of hardware drift or hardware

variations across a network on the performance of LUT

adaptive pseudowhitening (with fixed LUTs), we used a

similar approach to the one in Torres and Curtis (2013).

Unlike the work in that paper, different modified pulses
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are utilized here to quantify the performance degrada-

tion when using mismatched LUTs (but not mismatched

transformations); that is, we will explore the robustness

of the lookup tables to mismatched range correlations.

Figure 4 shows the magnitude and phase of three mod-

ified pulses. The original (black) pulse is the one mea-

sured on the KOUN radar and also the one used to

produce the lookup tables in the previous simulations.

The wide (green) pulse and the narrow (red) pulse have

different shapes and different phases from the original

pulse, leading to different range correlations (also de-

picted in Fig. 4). Based on our experience, we contend

that both the wide and narrow pulses are farther from

the original pulse than the typical variation of pulses in

FIG. 2. (left) Bias and (right) standard deviation of LUTAPTB (black), originalAPTB (green dashed),MFB (red

dotted), andWTB (blue dashed–dotted line) estimates as a function of SNR for the spectral moments. Simulations

use L5 5, sy 5 2m s21, (top)M5 15 with a Nyquist velocity ya 5 8.33m s21 (svn 5 0.12) for reflectivity, andM5
40 with ya 5 25m s21 (svn 5 0.04) for (middle) radial velocity and (bottom) spectrum width.
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time and across a well-maintained radar network.

Hence, if the lookup tables computed for the original

pulse produce satisfactory results for both the narrow

and wide pulses, then a single set of lookup tables based

on a nominal, representative pulse should accommodate

expected range correlation mismatches from hardware

drift and across a radar network. Note that the range

correlation is measured independently for each of the

three pulses, and a range correlation matrix that is

matched to each pulse is used to compute the unitary

transformation and eigenvalues for both LUT and

original adaptive pseudowhitening. The only part that is

being validated is the robustness of the LUTs computed

using the original pulse. The results will be deemed

FIG. 3. As in Fig. 2, but for (top to bottom) the polarimetric variables: differential reflectivity and phase,

and correlation coefficient. Simulations use L 5 5, sy 5 2m s21, ZDR 5 0.25 dB, rHV 5 0.99, and M 5 15 with

ya 5 8.33m s21.
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satisfactory if, for all three pulses considered here, the

performance of LUT adaptive pseudowhitening is

comparable to the performance of original adaptive

pseudowhitening.

Figures 5 and 6 show the results of this experiment for

the traditional spectral-moment estimators and the tra-

ditional polarimetric-variable estimators, respectively.

The bias and standard deviation for the six radar vari-

ables are displayed for the original pulse and for wide

and narrow versions of it. For each case, the perfor-

mance of both LUT adaptive pseudowhitening (solid)

and original adaptive pseudowhitening (dotted) is

shown. The simulation parameters are the same as those

used for Figs. 2 and 3. The pseudowhitening trans-

formations are calculated based on the (true) range

correlation corresponding to each pulse (original, nar-

row, and wide). In this context, the differences in

performance among the three pulses are not the focus of

the comparison and can be explained by the differences

in range correlations (due to the different modified

pulses). The key comparison is between LUT adaptive

pseudowhitening and original adaptive pseudowhiten-

ing for each pulse. A visual comparison of the solid and

dotted curves of the same color (i.e., the same modified

pulse) confirms that LUT adaptive pseudowhitening

performs comparably to the original version for each of

the three modified pulses. This indicates that the LUTs

are not especially sensitive to significantly mismatched

range correlation matrices, should not require periodic

recalculation, and should perform well across a well-

maintained radar network. However, the range corre-

lation matrix should still be accurately measured in real

time to prevent reflectivity biases and overall degraded

variance reduction performance.

FIG. 4. (top)Magnitude and (bottom) phase of (left) threemodified pulses: actual (black), wide (green), and narrow

(red), and (right) their corresponding normalized range correlations.
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In the next section, LUT adaptive pseudowhitening is

applied to the hybrid spectrum-width estimator, which

does not currently have an explicit variance expression.

The performance cannot be quantified in the same way

as the conventional estimators but meaningful compar-

isons can still be made.

4. Application of LUT adaptive pseudowhitening
to the hybrid spectrum-width estimator

Compared to the traditional spectrum-width (TSW)

estimator that is based on the ratio of the autocorrela-

tion at lags 0 and 1 (Doviak and Zrnić 1993), the hybrid

FIG. 5. (left) Bias and (right) standard deviation vs SNR for the spectral-moment estimators using the actual

(black), the wide (green), and the narrow pulse (red) in Fig. 4 for the same simulation parameters used in Fig. 2.

Shown is the performance of LUT APTB estimates (solid lines) and original APTB estimates (dotted lines).
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spectrum-width (HSW) estimator introduced by

Meymaris et al. (2009) is less biased and has a lower

standard deviation for narrow spectrum widths. For this

reason, it has recently been implemented on the WSR-

88D signal processor. The HSW estimator is a non-

traditional estimator that uses one of three possible

spectrum-width estimators depending on whether the

expected spectrum width is in a small, medium, or large

category. The three possible estimators are based on the

ratio of the autocorrelation at lags 0 and 1, 1 and 2, and 1

and 3, respectively. Whereas each of these possible

spectrum-width estimators has an explicit variance ex-

pression (e.g., Zrnić 1979), the variance of the resulting

hybrid estimator depends on how the individual esti-

mators are selected, and a closed-form expression is not

easily obtained. Thus, the HSW estimator is a perfect

candidate to illustrate the performance of LUT adaptive

pseudowhitening.

FIG. 6. As in Fig. 5, but for the polarimetric variables and the same simulation parameters used in Fig. 3.
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Unlike the results in the previous section, we cannot

assess the optimality of LUT adaptive pseudowhitening,

since a variance expression is not available. Instead, we

compare the performance of LUT APTB HSW esti-

mates to that of two other practical alternatives: APTB

TSWestimates andMFBHSWestimates. Figures 7 and 8

show the bias and standard deviation of the three es-

timators as a function of the SNR for true spectrum-

width values of 1, 2, 4, and 8m s21. Statistics for each

SNR and spectrum-width value are computed using

Monte Carlo simulations with 50 000 realizations using

L 5 5 and the modified pulse of the KOUN radar.

Other signal characteristics are the same as in the

previous simulations; that is,M5 40 samples per dwell

and ya 5 25m s21. The LUT for the HSW estimator is

computed using the procedure described in section 2

using the modified pulse of the KOUN radar. As ex-

pected, the bias of the HSW estimator at narrow

spectrumwidths (1 and 2m s21) is lower than that of the

TSW estimator. Still, the bias of LUT APTB HSW

estimates is the smallest, except for very small SNRs

(less than ;5 dB) with narrow-to-medium widths (1, 2,

and 4m s21). The standard deviation plots illustrate the

distinct advantage of adaptive pseudowhitening to

improve data quality. In all cases, the standard de-

viation of LUTAPTBHSWestimates is the smallest. A

final metric of quality for any spectrum-width estimator

is the likelihood of producing invalid values, which is

FIG. 7. Bias of spectrum-width estimates as a function of the SNR for the LUT APTB hybrid estimator (black),

the MFB hybrid estimator (dotted red), and the APTB traditional estimator (dashed green) with true spectrum

widths of (top left) 1, (top right) 2, (bottom left) 4, and (bottom right) 8m s21. Statistics for each SNRand spectrum-

width value are computed using 50 000 realizations withL5 5, themodified pulse of the KOUN radar,M5 40, and

ya 5 25m s21.
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referred to as a failure condition. Invalid spectrum-

width values occur when, due to errors of estimates, the

autocorrelation ratio is less than one (e.g., for the tra-

ditional spectrum-width estimator, this occurs when

the lag-1 autocorrelation estimate is larger than the lag-

0 estimate, which violates the Gaussian autocorrelation

assumption). Figure 9 shows the failure rate for the same

parameters as in the previous two figures, where it is

clear that LUT APTB HSW estimates are the least

likely to produce an invalid result, especially for narrow

spectrum widths (1 and 2ms21). Next, we validate these

results using data collected with the KOUN radar.

On 12 August 2004, the polarimetric S-band KOUN

radar sampled a severe storm event southwest of

Norman. Figure 10 shows (zoomed in) plan position

indicator (PPI) displays at ;2337 UTC of reflectivity

(top left), original APTB TSW estimates (top right),

conventional MFB HSW estimates (bottom left), and

LUT APTB HSW estimates (bottom right). Data

shown in this figure correspond to the lowest elevation

scan at an elevation of 0.58. At this elevation, 17

samples were collected at each range resolution vol-

ume using a pulse repetition time (PRT) of ;3.1ms

for reflectivity, and 52 samples were collected using a

PRT of ;1ms for radial velocity and spectrum width,

which matches the operational parameters of VCP 11

on the NEXRAD network. All spectrum-width fields

were obtained using the same time series data and the

same ancillary signal processing functions, such as

ground clutter filtering and data thresholding. It is

important to note that adaptive pseudowhitening was

based on range correlation measurements from the

data using the technique described by Curtis and

Torres (2013).

FIG. 8. As in Fig. 7, but for the standard deviation of spectrum-width estimates.
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The three spectrum-width panels in Fig. 10 confirm the

results from simulated data. Compared to conventional

(no range oversampling) processing (bottom left panel),

bothAPTB fields (right panels) exhibit a smoother texture

due to the smaller variance of estimates.However, the field

of LUT APTB HSW estimates shows regions of low

spectrumwidths (deep black colors)more consistently and

has many fewer negative estimates (blue). To quantify the

improvement afforded by LUT APTB, spatial variances

were estimated for the fields of MFB and LUT APTB

estimates using a 5 3 5 mask, and the ratio was taken

between theMFB spatial variances and the corresponding

LUT APTB ones. The resulting field (shown in Fig. 11) is

loosely termed variance reduction factor (VRF); however,

it conveys not only the true VRF but also the spatial var-

iability inherent to the fields. Still, VRF values significantly

larger than one represent true improvement of LUT

APTB over MFB processing. Values close to 5 (the theo-

retical maximum improvement) are evident in Fig. 11,

especially in regions of high SNR and more uniform

spectrumwidths. In summary, among the three estimators,

LUT adaptive pseudowhitening with the HSW estimator

exhibits the best quality (in terms of bias and standard

deviation) with the least amount of invalid estimates.

5. Conclusions

We developed a procedure that extends adaptive

pseudowhitening resulting in compatibility with nontradi-

tional radar-variable estimators that do not have explicit

variance expressions. Whereas the original version of

adaptive pseudowhitening requires explicit variance

FIG. 9. As in Fig. 7, but for the percentage of estimator failures (i.e., negative spectrum widths).
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expressions for each estimator, the proposed lookup table

(LUT) approach circumvents this requirement. That is,

unlike original adaptive pseudowhitening, which computes

nearly optimum pseudowhitening transformations using

analytical solutions based on explicit variance expressions,

the proposed technique obtains transformations using

lookup tables. Although the generation of lookup tables

is a computationally complex process, the tables can be

precomputed for each radar-variable estimator. Tables

need to be recomputed only if the radar-variable estimator

changes. For the three spectral moments and the three

polarimetric variables, a total of ;45000 lookup table

values would need to be stored (;180KB with single

precision), which are negligible storage requirements for

modern signal processors.

The performance of LUT adaptive pseudowhitening

using the traditional radar-variable estimators (the three

spectral moments and the three polarimetric variables)

was shown to be comparable to that of the original tech-

nique. Even though both original and LUT adaptive

FIG. 10. (top left) Zoomed-in PPI displays of reflectivity, (top right) original APTBTSWestimates, (bottom left)

conventional (no range oversampling) MFB HSW estimates, and (bottom right) LUT APTB hybrid spectrum-

width estimates. Data were collected with the S-band KOUN radar at;2337 UTC 12 Aug 2004 at an elevation of

0.58. Radar used L5 5,M5 17 with a long PRT of;3.1ms (ya ’ 8.9m s21) for reflectivity estimates, andM5 52

with a PRT of ;1ms (ya ’ 27.7m s21) for spectrum-width estimates. The color scale was modified to highlight

invalid (negative) spectrum-width estimates (blue).
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pseudowhitening depend on the normalized range corre-

lationmatrix, it would not be feasible to recalculate lookup

tables in real time to accommodate changes in the range

correlation due to hardware drifts. Fortunately, the per-

formance of LUT adaptive pseudowhitening is robust to

significant departures of the modified pulse from the one

originally used to generate the lookup tables.

The proposed technique was applied to the hybrid

spectrum-width estimator, which does not have an ex-

plicit variance expression. Compared to two other

practical alternatives (the traditional spectrum-width

estimator with original adaptive pseudowhitening and

the hybrid spectrum-width estimator with conventional

matched filter), the hybrid spectrum-width estimator

with LUT adaptive pseudowhitening exhibited the

smallest bias, the lowest standard deviation, and the

fewest number of failures. This was confirmed qualita-

tively on data collected with the KOUN radar.

In conclusion, the proposed LUT adaptive pseudowhit-

ening technique enables the use of nontraditional radar-

variable estimators for which explicit variance expressions

are not readily available. This is essential for an operational

implementation on the WSR-88D, which already includes

the nontraditional hybrid spectrum-width estimator.
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